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Surface wave motions in a container with a square base, which is subject to a vertical 
oscillation, are considered when the amplitude of the oscillation is small and the 
frequency of the oscillation is close to twice the natural frequency of the system. 
Subcritical wave motions are found for single modes as well as mixed modes. Here, 
single modes are described by either one of the two horizontal coordinates whereas 
mixed modes depend on both coordinates. It is found that in some subcritical region 
a stable single mode and a stable mixed mode coexist, producing complex basins of 
attraction. 

1. Introduction 
In  an experiment on surface wave in a vertically oscillating container, Faraday 

(1831) noticed that the frequency of surface waves was one half the frequency of the 
forcing oscillation. More than half a century after the further investigations on this 
matter by Rayleigh (1883a, b ) ,  Benjamin & Ursell(l954) explained this subharmonic 
excitation of the surface waves by analysing an infinite set of Mathieu’s equations 
derived from the linear theory of irrotational motion of an ideal fluid. This classical 
problem of hydrodynamic instability has recently arisen again in two rather different 
ways. One of these concerns the sometimes chaotic behaviour observed in a container 
with a closed basin (Keolian et al. 1981; Gollub & Meyer 1983; Ciliberto & Gollub 
1984, 1985; Holmes 1986; Simonelli & Gollub 1989). The other relates to solitary 
standing waves observed in a long narrow channel (Wu, Keolian & Rudnick 1984; 
Larraza & Putterman 1984; Miles 1984b). 

In this paper, we consider the case where the container has a square base in order 
to examine competition between a single wave mode and a mixed wave mode, both 
of which have the same critical point. The analysis was inspired by the planform 
selection problem in thermal convection (Swift 1984 ; Jenkins 1987). Mathieu’s 
equation in conjunction with the Faraday resonance is 

d2A 7[: 
-+(g-fcos2wt)-tanh 
dt2 1 

where g is the acceleration due to gravity, and f and 2w are the amplitude and the 
frequency of the forcing oscillation, respectively (Drazin & Reid 1981, p. 357). Since 
1, the side length of the square basin, and h, the height of the fluid relative to the 
basin, are fixed in our configuration of the problem, the system determines the 
natural frequency 

wo = [Tgtanh(:h)r, (1.2) 
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which corresponds to the free oscillation of surface waves a t  f = 0. These are the 
lowest frequency side-to-side ‘sloshing modes ’ with just half a wavelength between 
the sidewalls. When the forcing frequency 2w is tuned in such a way that w = wo, 
surface waves with a frequency w,, become marginally stable a t  f = 0 in inviscid fluid. 
If the forcing frequency is slightly off-tuned, the onset of the surface waves with 
frequency w,, in the linear theory is delayed until some finite f .  We concentrate our 
attention on the case where f and Iwz-wEl are small in the same order, and perform 
a weakly nonlinear analysis. In the process, a weak damping attributable to viscous 
effects is incorporated. Our approach to the problem of Faraday resonance is 
different from Miles’ ( 19844. He uses a Lagrangian and Hamiltonian formulation, 
whereas the classical expansion procedure and the multiple timescale analysis is 
performed in our approach. Although our analysis is tedious, it clearly interprets the 
bifurcation sequence of Miles as the supercritical and the subcritical bifurcations of 
the surface waves depending on w when it is fixed. Moreover, the resonance of two 
single wave modes is easily formulated in our analysis in contrast to the complication 
which prevented Miles from obtaining explicit results. 

More recently, Feng & Sethna (1989) considered surface wave motions in a 
container with a nearly square base subjected to a vertical oscillation. They 
employed perturbation expansions, as here. Their treatment is more general in that 
they consider rectangular ‘nearly square ’ containers ; but their emphasis is on the 
symmetry- breaking aspect of the problem rather than classification of bifurcation 
sequences which occur when the symmetry is preserved. They choose just one 
example in a parameter range which covers the case of infinite fluid depth. As will 
be made clear later, there are, in fact, five different parameter ranges determined by 
the configuration of the problem even in the exactly square case. Basically their 
results were obtained numerically. In the present paper the absence of the 
symmetry-breaking factor allows us to obtain explicit expressions analytically for 
the stability of the single mode ($3 .2 )  and the mixed mode ($3 .3 .3 )  and for the general 
mode solution ($3.3.2) .  The classification of the bifurcation diagram becomes possible 
only when such explicit expressions are obtained. The stability of the flat surface 
($3.1) and the descriptions of the single mode solutions ($3 .2 )  and the mixed mode 
solutions ($3.3.3)  are not novel but necessary for the analysis. We provide a 
numerical example in $4  in order to examine a situation where multiple stable 
solutions coexist. The formulation of the problem is described in $ 2  and the results 
are summarized in the last section. 

2. Description of the problem 
We consider irrotational surface wave motions of an ideal fluid layer with a depth 

h in a rectangular container, which has a square base with side length 1 and is subject 
to  an oscillatory vertical acceleration f cos2wt (see figure 1). The fluid motion is 
described by a velocity potential @(x, y, z, t )  which satisfies Laplace’s equation 

V 2 @ = 0  in - h < x < Y ,  (2 -  1 ) 

where 2 = L(x, y, t )  is the elevation of the fluid surface. Thc bottom and the side 
boundary conditions are 

= 0:  y = 0,l .  (2.2a,b,c) 
a@ - 0 :  x = O , l ,  - 

ax aY 
a@ a@ 
aZ - = O :  ~ = - h ,  _ -  
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Z =  

- f  J 
FIGURE 1. Configuration of the problem. 

fcos2wt 13 
On the surface z = 5, the kinematic and pressure conditions 

a[ a@ac a m 5  a@ 
at a x a x  ayay a Z '  
-+--+--=- ( 2 . 3 ~ )  

a@ 
at 
-+ (g- f cos 2wt)  6 = t(V@)Z (2.3b) 

are applied, where g is the gravitational acceleration. Surface tension is neglected but 
its incorporation would not present major difficulties. 

We assume that for a small parameter e, 

f - W E 2 ) ,  @, 5 - m) 
so that after expansion in 5 about z = 0, ( 2 . 3 ~ )  and (2 .3b )  are combined to give a 
nonlinear condition for @, 

a a@ i a v  a@ -+g- = - -(V@)2-- { k a,[( aZ 9 at.) at]} 
a 2 0  a@ 
a t 2  aZ 

a@ a a@ a 
2 ax ax ay ay a Z  

2 a a@ 2 a a@ - (V@y - - - (-) ] - (- + - -)} [ gaZ at az aZ a t 2  

( 9 

-+-- - 

a Z  2 a " "  gaZ at :I - - (V@)2- -- - (V@)2- +- (V@)'-+ - (V@)2 

a@) at 

a@ zw +f cos2wt-+-sin2wt- at z = 0, (2.4) 

which is valid up to the cubic order in e;  cf. Larraza & Putterman (1984). Then, 
Laplace's equation (2.1) is to be solved in -h < z < 0 with the boundary conditions 
(2.2a, b ,  c )  and (2.4). 

We expect a surface wave motion with a frequency w (  = 2 w / 2 )  and assume that 

Iw'-w:1 - O(e2), 

where w,, = lag tanh (ah)]; (2.5) 

is the natural frequency of the system with a wavenumber 

7c 

" = G  
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It is convenient to introduce a long timescale T and replace a/at  in (2.4) by 
a/at+2a/aT. Also, we expand # in powers of the small parameter E as 

@ = €#(I) + €2#(2)  + . . . . 12.7) 

At leading order in 8, the linear equation for the gravity wave 

is recovered. The solution of Laplace’s equation with the boundary conditions (2.2a, 
b, c) and (2.8) is 

cosh {a(z + h)} cosh {a(z + h)} 
qY1) = A ( T )  cos ax eiWt +B(T) cos ay eiWt +c.c. (2.9) 

cosh (ah) cosh (ah) 

Note that the discrepancy from zero when (2.9) is substituted into (2.8) is 

1 cosh {a(z+ h)}  cosh {a(z + h) }  
( w i - w z )  [A(T)  cosaxeiwt + B( T )  cos ay eiWt + C.C.  

cosh (ah) cosh (ah) 

and will be taken care of later in the equation for the cubic order in E .  

The evolution of a single surface wave mode, either A .f: 0, B = 0 or A = 0, B $. 0, 
and a mixed surface wave mode A $. 0, B =+ 0 on a long timescale T is our concern. 

At second order in the expansion, the boundary condition (2.4) becomes 

The appropriate solution of Laplace’s equation with the boundary conditions (2.2a, 
b,  c )  and (2.10) is given by 

cosh {2a(z + h)}  
cosh (2ah) 

#(2)  = C( T )  cos 2ax eziwt +D(T)  eziwt 

cosh {Sa( z+  h)} cosh { d2a(z  + h)} + E( T) cos 2uy eZiwt + H (  T) cos ux cos ay eZiwt 
cosh (2ah) cosh (2/2ah) 

cosh {a(z + h))  cosh (a(z + h)}  +L(T)  cosaxeiwL + M ( T )  cos ay eiWt 
cosh (ah) cosh (ah) 

+ J (  T )  t + C.C., 
where 

(2.11) 

3ia2( 1 + u2) (1 - uz) 2ia2(3u2- l)a 
E(T) = - B2, H ( T )  = AB, (2.12c, d )  

8 w u 2  w ( 4 u  - 2 / 2 4  

J ( T )  = - $ L ~ ( ~ - W ~ ) ( ( I A I ~ + + B ~ ’ ) ,  (2.1 2e)  

with 
u = tanh (ah), 3 = tanh (2/2ah). (2.13q b) 

It will turn out that  L(T)  and M ( T )  do not play a role in the following analysis. 
Conservation of mass requires J (  5“). 
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FIGURE 2. p and other combinations of p ,  q and r as a function of ah or u = tanh (ah). Graphs are 
normalized by 2w, 

At third order in E ,  the following set of evolution equations is obtained: 

A = S2A+I/'A*+(plA12+qIB12)A+rB2A*, (2 .14~)  

B = aB+FB*+(qlA12+plB12)B+rA2B*, (2.14b) 

where 

and 
a4( + 12 + 3a2 + 2a4) 

P =  > 16w, 

(2.15a, b) 

(2 .16~)  

I n  the evolution equations above, an asterisk denotes complex conjugation, and 
weak linear damping e2y (> 0) is incorporated following Miles (1984~) .  Separation of 
A into real and imaginary parts in ( 2 . 1 4 ~ )  leads to the same type of evolution 
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Im 
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FIGURE 3. The trace of the eigenvalue associated with the stability of the  flat surface on the 
complex plane when F2 is increased. 

equations as Miles' (1984 6 ,  see his equation (5.2a, b ) )  when B = 0. The set of evolution 
equations (2.14a, b )  is identical to the one obtained by Feng & Sethna (1989). 

In figure 2, p together with some combinations o f p ,  q and r which will be needed 
in the later analysis, is plotted as a function of ah. 

3. Analysis 

Linear stability analysis for the origin A = B = 0 is straightforward. The real part 
and imaginary part A", of an infinitesimal perturbation A" (or B )  satisfy 

3.1. Stability of the $at surface 

- Q - F  -,LL 

The eigenvalue A is obtained by 

( A  +P)' = F 2 - Q 2 .  (3.2) 

Hence, when F2 2 Q2 

A = -  p & (F2- D2)f 

and when F2 < Q2, 
A = -  p i (  - F2 + Q2)i. 

(3.3n) 

(3 .3b)  

We find that the origin becomes unstable (saddle) when F2 > Q2+p2.  When the 
origin is stable, the eigenvalues are either ( i )  complex with real part -,u for 0 < 
F2 < Q2 or (ii) they take two negative real values for Q2 < F 2  <Q2+p2 (see 
figure 3).  

3.2.  Single surface wave motion 
By setting a/dT = 0 in (2.14a), i.e. 

ipA, = QA,+FA,* +p(Ao12A, 

we can obtain the single surface wave motion 

(3.4) 

A = A o  = aoeio =I= 0, B = 0 
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(3.5a) 

and sin 20 = pu/F < 0. (3.5b) 

Alternative signs appearing subsequently in this subsection are consistent with that 
in ( 3 . 5 ~ ) .  By symmetry the other single surface wave solution B = B, + 0, A = 0 has 
identical properties. The alternative signs for a, in ( 3 . 5 ~ )  correspond to whether 
cos 28 is positive or negative ; they do not imply that there are always two possible 
a, values, for a: cannot be negative. From (3 .5b)  we find that there are two possible 
single surface wave motions for each positive a, with B = 0, whose phases are 
different by n. It turns out that only one of the alternative a, values is possible for 
p > 0, 52 > 0 or p < 0, 52 < 0 when F2 exceeds the critical value Q2 +p2 (supercritical 
bifurcation), and that both a, values are present for p > 0, 52 < 0 or p < 0, 52 > 0 
when p2 < F2 < Q2+p2 (subcritical bifurcation). Meron (1987) has already examined 
the subcritical bifurcation of single surface wave motions through their evolution 
equation which was derived only by summetry considerations. A few years earlier 
than Meron (1987), Miles ( 1 9 8 4 ~ )  seemed to  realize this subcriticality as he noticed 
an energy jump in some parameter region (see his figure 3). 

In order to analyse the stability of the single surface wave solution, perturbations 
and B are superimposed on A = A ,  and B = 0, respectively. Retaining only terms 

which are linear in A and B (and their complex conjugates), we get 

( 3 . 6 ~ )  

(3.6b) 

with A ,  as defined above. The perturbations A" and B do not interact wit,h each other. 
Let us examine ( 3 . 6 ~ )  first, which after some manipulation yields the equation for 

the eigenvalue h 
( A  + p)2 = - 4{F2 - $2 f Q(F2  -pu')i}, (3.7) 

The sum of the two eigenvalues is -2p. 

the treatment is similar. 
In the following, we shall consider the case where p < 0 for fixed 52. When p > 0, 

For the supercritical solution 

with 52 < 0, the eigenvalue satisfies 

( h + ~ ) ~  = 4(-Q2[1 +s-(l+s)i]+&~~>, (3.9) 

where s k 0 is defined in such a way that 

F2 = Q2(1+s)+p2. (3.10) 

Since 1 +s  2 ( l+s) f  for s > 0, we get (h+p)'  d p2. Hence, real parts of both 
eigenvalues are negative. 

For the subcritical solution with 52 > 0, the upper solution branch is given by 

(3.11) 
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whereas the lower solution branch is given by 

- Q + (p -"'):I: 
ao=[ (3.12) 

Correspondingly, the eigenvalue A satisfies 

(A+p)2 = 4{ -(Sg+S,)Q2+&L2}, (3.13) 

where S, 3 0 is defined as 
S, = ( F2 -pz) /Qz  (3.14) 

for the upper solution branch, and A satisfies 

(h+p)2 = 4{(S+S1)Q2+$2} (3.15) 

for the lower solution branch where S,  is defined by a similar way as S,, namely 

S,  = (F2-p2)/QZ (3.16) 

but. 0 < S, < 1. 
It can be seen that real parts of the two eigenvalues are both negative on the upper 

solution branch, whereas one of the two eigenvalues becomes positive on the lower 
solution branch, changing the sign a t  the turning point F2 = p2 or S,  = S, = 0. So far 
the stability properties with respect to perturbation A" are quite normal ; namely the 
supercritical solutions are stable whereas the subcritical solutions on the lower 
branch are unstable and gain stability a t  the turning point. However, stability must 
also be examined with respect to perturbations B. For (3.66), the eigenvalue h 
satisfies 

For the supercritical solution, (3.17) yields 

( A  +p)Z = pZ+f(s) Q2, 

where s is defined by (3.10) and 

(3.18) 

(3.19) ' PI 
sz' f(s) = P+&s+P(l+s)r- 

with 
2r r2-q2 , Q=l- -+- - - .  

r q rz-q2 p = 2  --+-+- 
P P 2  ( P P  P 2  

(3.20a, b )  

When p is positive (hence lQl = Q), A s )  is given by 

f(s) = P+&s--P(l +s) t  

Obviously, f ( 0 )  = 0, and s = s1 = P(P-2Q)/Q2 satisfies fA= 0 only when (P-&)/ 
Q > 0, i.e. ( p - q + r ) / ( p + q - r )  < 0. It is found that for 0 < s 4 1, 

~ F Z  P+Qs--P(l +is) = ' Z s  < 0 
P 
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because p - q - r < 0 (see figure 2). Therefore, the only case where f is positive is when 
p-q+r  > 0 and p+q-r  < 0, and for 

(when p-q+r < O  and p+q-r  > 0 ,  s1 is negative so that f is negative for 
F2 > ,u2 + Q2). 

When p is negative (hence JQJ = -Q), fis) is again given by (3.21). The same 
argument as above, except that!> 0 for 0 < s < 1, leads to the conclusion thatf is  
negative only when p-q+r  < 0 and p+q-r  > 0 and for F2 > R,. However, this 
condition cannot be met as figure 2 indicates. Thus, the supercritical single mode is 
always unstable when p < 0. 

The stability of the subcritical solutions with respect to perturbations B is dealt 
with similarly. When p - q + r > 0 and p + y - r > 0, the lower branch is unstable and 
the upper branch is stable for F2 > R,, irrespective of the sign of p.  When p-q+ 
r < 0 and p+y-r < 0, the lower branch is stable and the upper branch is unstable for 
F2 > R,, again irrespective of the sign of p. When p-q+r  > 0 and p+y-r  < 0, 
stability occurs only when p < 0 and R, < F2 < ,u2+Q2. When p-q+r < 0 and 
p + q- r > 0, instability occurs only when p > 0 and R, < F2 < ,u2 + Q2. Since p + q - 
r < 0 always (see figure 2), many possibilities are eliminated. In  order to get overall 
stability, the normal stability properties derived from ( 3 . 6 ~ )  must also be taken into 
account. 

3.3. Double surface wave motion 
The set of evolution equations (2.14a, b) has double mode solutions, A = ae'4, 
B = be's with ah =+ 0. After setting a/aT = 0, real and imaginary parts of the 
equations are separated into 

Q+Fcos2$+pa2+qb2+rb2cos2($-$)  = 0, (3.224 

Q +F cos 2$ +qa2 +pb2 + ra2 cos 2($ - $) = 0, (3.22b) 

,u+Fsin2$+rb2sin2($-$) = 0, (3.22~) 

,u + F sin 2$ - ra2 sin 21 # - llr) = 0. (3.22d) 

3.3.1. Case when sin 2($-$) = 0: mixed mode 

When sin2($-$) = 0, i.e. $-$ = +n7c (n integer), (3.22c, d) give 

sin2# = sin2$ (3.234 

because F =+ 0. Therefore, n must be an even integer, that is, the phases of A and B 
are the same or different by 7c. In  this case, 

cos 2($ - $) = 1 and cos 2$ = cos 2$. (3.236, c) 

Subtracting (3.223) from (3.22a), we get 

(p-q-r) (a2-b2) = 0 (3.24) 

by using (3.23b, c). Sincep-q-r < 0 (see figure 2), two amplitudes a and b are equal: 

a = b. (3.25) 

Then, the following set of equations is obtained : 

Q+Fcos2$+(p+q+r)a2  = 0, ,u+Fsin2# = 0. 



274 M .  Nagata 

Comparison of these equations with (3 .4 )  for the single surface wave motion leads to 

( 3 . 2 6 ~ )  

sin 2$ = sin 2$ = p / F  < 0. (3.26b) 

We call this solution the mixed mode. This mode is characterized by the corner-to- 
corner surface wave. It is immediately found that the mixed mode bifurcates 
supercritically at F2 = p2+Q2 when ( p + g + r ) Q  > 0, and that the bifurcation is 
subcritical when ( p + q + r ) Q  < 0. 

3.3.2.  Case when sin 2($-k) =+= 0 :  general mode 

Another type of solution occurs when sin 2($-$) =I= 0. From (3.22a, b,  c,  d )  we get 

2Q , (3.27a, b )  a“b2 = ~ and a 2 + b 2 + - -  
2p cos2($--$)-1 

p - g - r  sin2($-$) p + q - r  with 

cos2 ($-$) = ( 4 r ( p - q + r ) p 2 +  ( p - q - r ) 2 F 2 & D i )  /[ 8r { p 2  + (’ - (I - r ) 2  Q2}] (3.27 c )  
( P +  q - v  

D = ( p  - q - r)4F4 + 8r(p - q + r )  ( p  - q -  r )zp2F2 - 16r2 @ - q + r ) ’ ( p - q - r )  2 p ZQ2 . 
(P + q - v  

(3 .27d)  

Because u2 =I= bz and ab + 0, we call this solution the general mode. From (3 .27b) ,  the 
general mode exists only when SZ and p + q - r  have different signs. 

(3 .28)  

Therefore, we have to consider (3 .28)  together with cos2 ($ - $) < 1. Without a loss 
of generality, we  can suppose t h a t  a2 2 b2.  Knowing that 

(3.29) 

which is obtained by eliminating b2 from (3.27a, b ) ,  does not exist at F2 < 1 because 
D < 0, that  a2+m as F2 +a, and that a2 is symmetric with respect to a2 = 
- Q / ( p + q - r ) ,  we can draw possible pictures of a2 against F2 (see figure 4). a2 is 
four-valued a t  most. Turning points can occur at cos2($-$) = 1 and a t  D = 0. I t  is 
interesting to see that cos2($ - $) = 1 takes place at 

and that the equality in (3 .28)  

holds at F2 = R,, where a2 = - 2 Q / ( p + g - r )  and b2 = 0. Between these points 
cos2($ - $) changes monotonically. Since we suppose that az 2 b2,  a,2 can take values 
only between -Q/ (p+g-r )  and - 2 Q / ( p + q - r ) .  The segment o f a 2  between 0 and 
- Q / ( p  + q - r )  in figure 4 can be regarded as thc graph of b2.  
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FIGURE 4. u2 values of possible general modes. By the constraint (3.28) together with cos2(q5-+) 
< 1, general modes can exist only on a segment indicated by a thick curve. u2 is normalized by 
Q / ( - p - q + ~ ) .  Only the case with ur 2 b2 is shown. (a )  R,  > R,,  ( b )  R ,  > R,, ( c )  0 < ,u < 1. 

It may be instructive to describe the behaviour of a, when p is small. From the 
expression for the general mode solution (3 .29)  with (3.27c, d ) ,  we get easily 

(Fz < R,) and a2 x &--- (F2 < R,) a2 X _____ F 52 52 
p+q- - r  p - q + r  p + q - r  

for F2 9 p. The turning points occur at 

This situation is illustrated in figure 4 ( c ) .  
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3.3.3. Stability of mixed modes 

Now, local stability properties of the mixed mode (az = b2)  solutions are examined. 
Perturbations A" and B superimposed on the x-wave A and y-wave B ,  respectively, 
satisfy 

i -+p = SZA"+FA"+p(A2A"*+21A12A") (i3T 
+q(IB12X+AB*B"++ABB"*) + r(B2A"* + 2A*BB"), ( 3 . 3 0 ~ )  

8 = SZB"+~B"*+p(B28*+21B12B) 

+q(IAI2B +A*BA"+ABA"*) + r(A2B* + 2AB*A"). (3.30b) 

Since 

( 3 . 3 1 ~ )  

(3.31 b)  

and 
eZi$ = eZi@ (always) (3.31 c )  

for sin2 (q5- 4) = 0 or rj5 = $+Nx (N even or odd), it is found that (3.30a, b )  can be 
reduced to 

when N is even, and for 

when N is odd. 
Since 

and 

(p+q+r)a2 =pa;  

$ = O  

(3 .324  

(3.32 b)  

(3.33 a )  

(3.33b) 

(3.34a) 

(3.343) 

by (3.5a, b )  and (3.26a, b ) ,  equation ( 3 . 3 2 ~ )  is identical to (3.6a), so that the stability 
properties of the single mode with respect to A", which we have explored in the 
previous subsection, hold for the eigenvalue problem associated with ( 3 . 3 2 ~ ~ ) .  
Therefore, we have only to analyse (3.326). The transformation procedure described 
above reduces the cumbersomeness which prevented Feng & Sethna (1989) from 
solving (3.30a, 6 )  analytically when the symmetry-breaking parameter is present. 
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After some manipulation, we find that the eigenvalue h with p cc eAT for (3.32b) 
satisfies 

r ) ( - ~ - q + 3 r ) - ~  

(3.35) 

where the double sign is consistent with that of the expression for a or b in ( 3 . 2 6 ~ ) .  
The method to determine whether the right-hand side is larger or smaller than p2 a t  
given F2 with fixed 52 is basically the same as described in $3.1.  Therefore, we just 
describe results which are derived from (3.35) in the following. 

For the supercritical branch with p + q + r  < 0 and 52 < 0, the mixed mode is 
unstable only when p + q - r < 0, p + q - 3r > 0 and F2 > R,, whereas the mixed mode 
on the supercritical branch with p + q +  r > 0 and 52 > 0, is stable only when p + q -  
r < 0, p + q -  3r < 0 and F2 > R,. For the subcritical solutions, when p + q - r  > 0, the 
lower branch is stable and the upper branch is unstable for F2 > R,, irrespective of 
the sign of p + q + r .  When p + q - r < 0, although the upper branch is stable for both 
p + q  + r > 0 and p + q + r < 0, the lower branch is unstable for R, < F2 < p2 + Q2 only 
if p + q + r  < 0. Since p+q-r  < 0 and r > 0 always, p + q - 3 r  is negative. This 
eliminates many possibilities. This statement must, be combined with the normal 
stability property derived from ( 3 . 3 2 ~ )  in order to make stability analysis for the 
mixed mode complete. 

All the realizable bifurcation pictures are classified in figure 5 in terms of ah. When 
52 < 0, the mixed mode is always preferred. The general mode exists only when 52 > 0. 
The general mode connects two points a t  F2 = R, on the single mode branch and 
a t  F2 = R, on the mixed mode branch where one of the four eigenvalues changes sign. 
The general mode may be double-valued, as indicated in figure 4. It can be proved 
that the turning point of the general mode, if it exists, does not occur a t  F2 smaller 
than p2. The case in figure 5 ( a )  corresponds to the one analysed by Feng & Sethna 
(1989). They considered the case more generally by introducing a slight difference 
between the two side lengths of the base. But we believe that there are some points 
yet to be made clear in their analysis. For instance, in their figure 2 the behaviour 
of the single modes OM2 and OM4 and the mixed mode MS2 at small forcing 
amplitude (corresponding to  their large 1 ~ 1  with cr < 0) is not clear, whereas the Q < 0 
part of our figure 5 (a )  shows that the subcritical branches for both single and mixed 
modes have turning points a t  F2 = p2. The stability of the general mode will be 
analysed numerically in the next section for a few selected cases. 

4. Numerical examples 
I n  this section, finite-amplitude standing wave motions and their stability are 

examined numerically following Nagata et al. ( 1989). For the finite-amplitude 
solutions, a Newton-Raphson method is used whereas we use a matrix inversion 
method to solve eigenvalue problems. Also, trajectories in the four-dimensional space 
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ah 

1.056 

0.861 

0.851 

0.705 

s Z < O  Q > O  

FIGURE 5. Bifurcation diagram. The single surface mode and the mixed surface mode are 
represented by letters S and M, respectively. Stable branches are indicated by a full curve whereas 
unstable branches are indicated by a dashed curve. For the general mode indicated by a letter G 
and by a dotted curve, stability has not been examined anayltically. a* is normalized by 
Q/( -P -9+ T ) .  

of A,, A , ,  B,, B, representing real and imaginary parts of both A and B are followed 
with respect to time T from given initial values in order to see how stable standing 
wave motions attract, especially when stable solutions are not unique. Of course from 
the symmetry of the system, if (A,, A,, B,, B,) is a solution, then (AR, A, ,  -B,, 
-&), ( -AR, -AI,  B,, B I ) ,  ( -AR,  -AI,  -B,, -BI )  and the ones with A and B 
interchanged are also the solutions in general. But we are more interested in 
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FIGURE 6(a-b). For caption see next page. 

situations where additional modes of wave motions coexist. The set of evolution 
equations (2.14a, b )  is integrated with a fourth-order Runge-Kutta algorithm. 

We select the case with (T = 0.5, ,u = 0.9 and L2 = 2.0, corresponding to the SZ > 0 
part of figure 5 ( e ) .  This case is particularly interesting because there exists a 
‘window ’ in the subcritical parameter region where three different stable modes 
coexist : namely, flat surface, single surface wave and mixed surface wave. Although 
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(4 

- 4  t 
FIGURE 6. Case with u = 0.5, ,a = 0.9, 8 = 2.0 and a = 1.0. (a)  Plot of u2 normalized by 
Q/( - p - q + r )  for various modes as a function of the control parameter F 2 .  For description, see 
figure 5. The eigenvalues are shown in ( b )  are for the single mode, ( c )  the mixed mode and ( d )  the 
general mode. Letters 1 and u indicate a lower branch and an upper branch, respectively. The 
eigenvalues for the flat surface indicated by a letter f a re  also shown in ( b )  and ( c ) .  Some portions 
of ( b )  and ( c )  are duplicated in (d).  

Feng & Sethna (1989) claim that physically wave motions are inhibited when 
ah  < 1.0 owing to a strong damping effect, the case sets in a t  a h  = 0.705, which is well 
within the possible range of experiments. 

The single mode and the mixed mode bifurcate subcritically a t  F2 = 4.81. The 
turning points of both modes occur at the common value of F2 = p2 = 0.81. The 
general mode, which connects a point on the lower mixed mode branch at F2 = 
R, = 0.918379 and a point on the upper single mode branch at F2 = R, = 2.72420 
without a turning point, is found to be always unstable. The mixed mode is stable 
for F2 > y2,  whereas the single mode is stable only for p2 < F2 < R, (see figure 6). The 
parameter region y2 < F2 < R,, where both single and mixed modes together with 
the flat surface are stable, has been investigated numerically for many different 
critical states. The final point to which trajectories are attracted depends on these 
initial values as shown in figure 7. For instance, when initial values with A ,  = B, = 
0 are chosen, trajectories starting on or near the line B, = 0 in (AR, BR)-space are 
attracted to one of the two single modes with B = 0 or to the origin, whereas 
trajectories starting on or near the line BR = A ,  are attracted to  one of the two 
mixed modes with A = B or to the origin. Between these two lines, all possible forms 
of stable solut'ion can be reached. For initial values with B ,  = 0 together with 
A ,  = B, = 0, the trajectories remain on the manifold ofB = 0 a t  all times. Figure 7 ( a )  
is such an example. This intertwined structure was analysed theoretically by Gu, 
Sethna & Narain (1987) when they dealt with one mode dynamics, and evidence of 
such a structure was observed experimentally by Simonelli & Gollub (1989). In  our 
three-dimensional problem, a similar intertwined structure of trajectories can also 
be seen on the invariant manifold A = B (see figure 7b) when initial values satisfy 
A = B. Phase space trajectories are much more complicated for initial values 
A ,  + B R  =/= 0 (figure 7c) than for the two extreme cases just described. 

Two other interesting cases emerge from figures 5 ( b )  and 5 (d )  when $2 > 0. The 
stability arguments described in $3.2 for the single mode and in $3.3.3 for the mixed 
mode indicate, with the aid of the principle of exchange of stability, that the general 
mode in both cases has two positive real eigenvalues near one of the bifurcation 
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FIGURE 7 .  Projection of trajectories on the phase planes (AR,AI)  and (BR,BI). Trajectories are 
attracted to : (a) flat surface or single modes when c2 = 0, ( b )  the flat surface or mixed mode when 
el = c2, (c) the single mode or the mixed mode when c1 += co, where c1 3 0 and c2 3 0 are initial 
values of A ,  and B,, i.e. (A,(O), A,(O), B,(O), B,(O)) = (cl, 0, cz,  0). 
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points a t  F2 = R, or F2 = R, and two negative real eigenvalues near the other 
bifurcation point. Therefore, either the two eigenvalues change signs individually 
somewhere between the bifurcation points, or a Hopf bifurcation occurs from 
the general mode. The latter turns out to  be the case. Numerical calculations for 
u = 0.75, p = 1.0 and Q = 2.0 reveal two negative eigenvalues, one of which is zero 
at  F 2  = R,, merging together to transform themselves into a complex conjugate pair 
with negative real part as F2 is decreased from F2 = R, x 11.79. Then, this pair 
crosses the imaginary axis on the complex plane at F 2  = 10.2 before it is separated 
into two positive eigenvalues towards F2 = R, = 2.09. 

The whole sequence occurs in the reverse order in the case with u = 0.65, p = 1.0 
and SZ = 2.0, which corresponds to figure 5 ( d ) .  

The structure of this time-dependent solution, especially in the first case, seems to 
be very rich; periodic and heteroclinic orbits and chaotic behaviour have been 
observed in a provisional analysis. More detailed investigations are underway. 

5. Conclusion 
Competition between single and mixed surface wave motions has been investigated 

in a container with a square base. The results obtained analytically are classified in 
figure 5 according to coefficients p ,  q and r of the nonlinear terms of the coupled 
evolution equations. These coefficients are determined explicitly by ah. It is found 
that in any case the m i x d  mode is preferred when w < wo and the general mode 
solution exists only when w > wo. Numerical calculations were carried out, in 
particular to analyse the stability of the general mode. Also, by integrating the 
coupled evolution equations numerically, complicated ways of how multiple stable 
fixed points attract trajectories were revealed. Intertwined structures of trajectories 
were observed in the four-dimensional phase space by imposing specific initial 
conditions B, = 0 or A ,  = B,  with A ,  = B, = 0 when a stable single mode and a 
stable mixed mode coexist. For initial conditions with A ,  $. B,.+ 0 with A ,  = B, = 0, 
typical sizes of the basins of attraction for each fixed point become smaller as the 
distance of initial values from the origin increases (see figure 8).  Thcrc are nine 
attractors and the basins in the four-dimensional phase space are entangled in a 
complicated way. Complicated structures of the basins of multiple coexisting 
attractors are reported in other systems (Battelino et al. 1988). 

The Hopf bifurcations are detected on the general mode branch in $ 4  for some 
parameter values. Successive bifurcations from the periodic solution leading to chaos 
will be discussed in a separate paper shortly. 

For the special value of u for which p = 0 or p + q + r = 0 etc, the problem becomes 
degenerate and higher-order terms must be taken into account. 

After th i s  work was presented a t  Euromech 236 (Cambridge, 1988), the author 
received a preprint of Feng & Sethna (1989). Their simultaneous research was drawn 
to the author’s attention by Professor J. P. Gollub, to whom the author is greatly 
indebted. Also, the author would like to thank Professor A. D. D. Craik for giving 
him an opportunity to work under grant supported by SERC. Discussion with him 
is greatly appreciated. 
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